Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5'-adenylylsulfate reductase.

Identifieur interne : 001143 ( Main/Exploration ); précédent : 001142; suivant : 001144

Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5'-adenylylsulfate reductase.

Auteurs : J A Bick [États-Unis] ; F. Aslund ; Y. Chen ; T. Leustek

Source :

RBID : pubmed:9653199

Descripteurs français

English descriptors

Abstract

5'-Adenylylsulfate (APS) reductase (EC 1.8.99.-) catalyzes the reduction of activated sulfate to sulfite in plants. The evidence presented here shows that a domain of the enzyme is a glutathione (GSH)-dependent reductase that functions similarly to the redox cofactor glutaredoxin. The APR1 cDNA encoding APS reductase from Arabidopsis thaliana is able to complement the cysteine auxotrophy of an Escherichia coli cysH [3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase] mutant, only if the E. coli strain produces glutathione. The purified recombinant enzyme (APR1p) can use GSH efficiently as a hydrogen donor in vitro, showing aKm[GSH] approximately of 0.6 mM. Gene dissection was used to express separately the regions of APR1p from amino acids 73-327 (the R domain), homologous with microbial PAPS reductase, and from amino acids 328-465 (the C domain), homologous with thioredoxin. The R and C domains alone are inactive in APS reduction, but the activity is partially restored by mixing the two domains. The C domain shows a number of activities that are typical of E. coli glutaredoxin rather than thioredoxin. Both the C domain and APR1p are highly active in GSH-dependent reduction of hydroxyethyldisulfide, cystine, and dehydroascorbate, showing a Km[GSH] in these assays of approximately 1 mM. The R domain does not show these activities. The C domain is active in GSH-dependent reduction of insulin disulfides and ribonucleotide reductase, whereas APR1p and R domain are inactive. The C domain can substitute for glutaredoxin in vivo as demonstrated by complementation of an E. coli mutant, underscoring the functional similarity between the two enzymes.

DOI: 10.1073/pnas.95.14.8404
PubMed: 9653199
PubMed Central: PMC20988


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5'-adenylylsulfate reductase.</title>
<author>
<name sortKey="Bick, J A" sort="Bick, J A" uniqKey="Bick J" first="J A" last="Bick">J A Bick</name>
<affiliation wicri:level="4">
<nlm:affiliation>Biotech Center and Plant Science Department, Rutgers University, New Brunswick, NJ 08901-8250, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotech Center and Plant Science Department, Rutgers University, New Brunswick, NJ 08901-8250</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Aslund, F" sort="Aslund, F" uniqKey="Aslund F" first="F" last="Aslund">F. Aslund</name>
</author>
<author>
<name sortKey="Chen, Y" sort="Chen, Y" uniqKey="Chen Y" first="Y" last="Chen">Y. Chen</name>
</author>
<author>
<name sortKey="Leustek, T" sort="Leustek, T" uniqKey="Leustek T" first="T" last="Leustek">T. Leustek</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:9653199</idno>
<idno type="pmid">9653199</idno>
<idno type="pmc">PMC20988</idno>
<idno type="doi">10.1073/pnas.95.14.8404</idno>
<idno type="wicri:Area/Main/Corpus">001138</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001138</idno>
<idno type="wicri:Area/Main/Curation">001138</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001138</idno>
<idno type="wicri:Area/Main/Exploration">001138</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5'-adenylylsulfate reductase.</title>
<author>
<name sortKey="Bick, J A" sort="Bick, J A" uniqKey="Bick J" first="J A" last="Bick">J A Bick</name>
<affiliation wicri:level="4">
<nlm:affiliation>Biotech Center and Plant Science Department, Rutgers University, New Brunswick, NJ 08901-8250, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotech Center and Plant Science Department, Rutgers University, New Brunswick, NJ 08901-8250</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Aslund, F" sort="Aslund, F" uniqKey="Aslund F" first="F" last="Aslund">F. Aslund</name>
</author>
<author>
<name sortKey="Chen, Y" sort="Chen, Y" uniqKey="Chen Y" first="Y" last="Chen">Y. Chen</name>
</author>
<author>
<name sortKey="Leustek, T" sort="Leustek, T" uniqKey="Leustek T" first="T" last="Leustek">T. Leustek</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (enzymology)</term>
<term>Escherichia coli (enzymology)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Proteins (metabolism)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Ribonucleotide Reductases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (enzymologie)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxidoreductases acting on sulfur group donors (MeSH)</term>
<term>Protéines (métabolisme)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Ribonucleotide reductases (métabolisme)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Oxidoreductases</term>
<term>Proteins</term>
<term>Recombinant Proteins</term>
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Glutaredoxins</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Oxidoreductases</term>
<term>Protéines</term>
<term>Protéines recombinantes</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">5'-Adenylylsulfate (APS) reductase (EC 1.8.99.-) catalyzes the reduction of activated sulfate to sulfite in plants. The evidence presented here shows that a domain of the enzyme is a glutathione (GSH)-dependent reductase that functions similarly to the redox cofactor glutaredoxin. The APR1 cDNA encoding APS reductase from Arabidopsis thaliana is able to complement the cysteine auxotrophy of an Escherichia coli cysH [3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase] mutant, only if the E. coli strain produces glutathione. The purified recombinant enzyme (APR1p) can use GSH efficiently as a hydrogen donor in vitro, showing aKm[GSH] approximately of 0.6 mM. Gene dissection was used to express separately the regions of APR1p from amino acids 73-327 (the R domain), homologous with microbial PAPS reductase, and from amino acids 328-465 (the C domain), homologous with thioredoxin. The R and C domains alone are inactive in APS reduction, but the activity is partially restored by mixing the two domains. The C domain shows a number of activities that are typical of E. coli glutaredoxin rather than thioredoxin. Both the C domain and APR1p are highly active in GSH-dependent reduction of hydroxyethyldisulfide, cystine, and dehydroascorbate, showing a Km[GSH] in these assays of approximately 1 mM. The R domain does not show these activities. The C domain is active in GSH-dependent reduction of insulin disulfides and ribonucleotide reductase, whereas APR1p and R domain are inactive. The C domain can substitute for glutaredoxin in vivo as demonstrated by complementation of an E. coli mutant, underscoring the functional similarity between the two enzymes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9653199</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>06</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>95</Volume>
<Issue>14</Issue>
<PubDate>
<Year>1998</Year>
<Month>Jul</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5'-adenylylsulfate reductase.</ArticleTitle>
<Pagination>
<MedlinePgn>8404-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>5'-Adenylylsulfate (APS) reductase (EC 1.8.99.-) catalyzes the reduction of activated sulfate to sulfite in plants. The evidence presented here shows that a domain of the enzyme is a glutathione (GSH)-dependent reductase that functions similarly to the redox cofactor glutaredoxin. The APR1 cDNA encoding APS reductase from Arabidopsis thaliana is able to complement the cysteine auxotrophy of an Escherichia coli cysH [3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase] mutant, only if the E. coli strain produces glutathione. The purified recombinant enzyme (APR1p) can use GSH efficiently as a hydrogen donor in vitro, showing aKm[GSH] approximately of 0.6 mM. Gene dissection was used to express separately the regions of APR1p from amino acids 73-327 (the R domain), homologous with microbial PAPS reductase, and from amino acids 328-465 (the C domain), homologous with thioredoxin. The R and C domains alone are inactive in APS reduction, but the activity is partially restored by mixing the two domains. The C domain shows a number of activities that are typical of E. coli glutaredoxin rather than thioredoxin. Both the C domain and APR1p are highly active in GSH-dependent reduction of hydroxyethyldisulfide, cystine, and dehydroascorbate, showing a Km[GSH] in these assays of approximately 1 mM. The R domain does not show these activities. The C domain is active in GSH-dependent reduction of insulin disulfides and ribonucleotide reductase, whereas APR1p and R domain are inactive. The C domain can substitute for glutaredoxin in vivo as demonstrated by complementation of an E. coli mutant, underscoring the functional similarity between the two enzymes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bick</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Biotech Center and Plant Science Department, Rutgers University, New Brunswick, NJ 08901-8250, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aslund</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leustek</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.-</RegistryNumber>
<NameOfSubstance UI="D050862">Oxidoreductases Acting on Sulfur Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.99.2</RegistryNumber>
<NameOfSubstance UI="C019618">adenylylsulfate reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050862" MajorTopicYN="Y">Oxidoreductases Acting on Sulfur Group Donors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1998</Year>
<Month>7</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1998</Year>
<Month>7</Month>
<Day>8</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9653199</ArticleId>
<ArticleId IdType="pmc">PMC20988</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.95.14.8404</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Dec;84(23):8525-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3317413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Sep;171(9):5218-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2670910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Dec 5;355(3):229-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7988678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1994 Nov 1;314(2):257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7979362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Aug 25;266(24):16105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1874748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Sep 26;352(2):159-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13377-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Oct 13;31(40):9733-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1382592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1992 Dec;13(6):906-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1476744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 22;271(12):6736-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3672-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">34620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1969 Aug 5;180(3):529-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4390248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1976 Jan;133(1):21-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24425174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 4;235(5):1585-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1986 Nov;168(2):1026-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3536846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1987;143:85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3657565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jul;177(14):4121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7608087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1994 Jun;140 ( Pt 6):1273-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8081492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Oct 10;254(19):9627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">385588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Mikrobiol. 1972;84(1):77-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5053247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Jul 30;268(1):146-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2200707</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>New Brunswick (New Jersey)</li>
</settlement>
<orgName>
<li>Université Rutgers</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Aslund, F" sort="Aslund, F" uniqKey="Aslund F" first="F" last="Aslund">F. Aslund</name>
<name sortKey="Chen, Y" sort="Chen, Y" uniqKey="Chen Y" first="Y" last="Chen">Y. Chen</name>
<name sortKey="Leustek, T" sort="Leustek, T" uniqKey="Leustek T" first="T" last="Leustek">T. Leustek</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Bick, J A" sort="Bick, J A" uniqKey="Bick J" first="J A" last="Bick">J A Bick</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001143 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001143 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9653199
   |texte=   Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5'-adenylylsulfate reductase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9653199" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020